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EXCEPTIONAL UNITS IN A FAMILY OF 

QUARTIC NUMBER FIELDS 

G. NIKLASCH AND N. P. SMART 

ABSTRACT. We determine all exceptional units among the elements of cer- 
tain groups of units in quartic number fields. These groups arise from a one- 
parameter family of polynomials with two real roots. 

1. INTRODUCTION 

There has been much interest in exceptional units over recent years partly for 
their own sake, see for instance [2], [5], and [6], and partly because they arise when 
solving diophantine equations of various classical types. For instance 2-term unit 
equations arise in the algorithm of Tzanakis and de Weger for solving Thue and 
Thue-Mahler equations, see [15] and [16], and in the work of Smart on solving dis- 
criminant form equations, [13]. In recent years a number of authors have considered 
solving parametrized families of diophantine equations, see [14], [7], [11] and [8]. For 
any given number field the algorithm in [12] can be used in principle to determine 
all the exceptional units within the field. Treating a parametric family of fields in 
this way requires a method for controlling the fundamental units; however, it is 
quite feasible to investigate exceptional units in a parametrized family of equation 
orders, as we will show. 

Up to isomorphism, only finitely many number fields of unit rank zero or one 
contain exceptional units which do not come from a proper subfield, and Nagell 
determined all of these in a series of papers in the late 1960s, [9]. In [10] the 
first author suggested an approach for finding all exceptional units in parametrized 
families of number fields of unit rank at least two. Here we shall discuss one such 
family in detail, intending to provide an example on which the investigation of other 
families can be modeled, as well as to illustrate the power of recent estimates for 
linear forms in logarithms. 

Recall that a unit E of a commutative ring with 1 is exceptional if 1 - E is also 
a unit; in other words, if there exists a unit e' such that 

6+6 = 1. 

In our case, the underlying rings will be monogenic subrings R = Z[4] of the rings of 
integers OK of certain number fields K = Q(O), and the units E will be taken from 
an explicitly presented subgroup of the group of units R*, whereas e' will a priori 
live in R*. We can test whether E is exceptional by checking whether the absolute 
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norm INK/Q(e - 1) equals 1, norms always being taken from K to Q. Specifically, 
consider the family of polynomials 

fa(X) = x4 + ax3 + x2-+ax-1 

where a E Z>O. Note that these polynomials are invariant under the joint substitu- 
tion (x, a) |-* (-x, -a), so it is no loss of generality to exclude the values a < 0, and 
that they are irreducible because their reductions modulo 2 and 3 are incompatible 
with linear and with quadratic factors, respectively. The discriminant of fa is 

-4a6 - 47a4 - 112a2 -400, 

hence always negative. Thus each fa has two real roots and a pair of complex roots. 
Let 0 denote any root of fa in abstracto and let R, K be as above, the dependence 
on a being understood. The full unit group 0 is the direct product of {?1} with 
a free abelian group of rank 2. 

As explained in [10, section 4.5], our family is one of several for which r=1 0-1 
and rq2 = 02 + 1 are always units of R. Thus we have, for each a > 1, the trivial 
exceptional units, namely 

02 + 1, _02, 02/(1 + 02) and their inverses. 

Recall, e. g. from [6, section 2], that the group NH of order 6 of fractional linear 
transformations generated by w H-* 17w and w H-* 1- w acts on the exceptional units 
of any ring. Let G be the subgroup of units of 0 generated by {-1, 1, 2}. We 
shall see shortly that it is of finite index in 0 when a > 1. (This is not true when 
a = 0, and this is one reason why we have excluded that case; it will be treated on 
another occasion in the context of quartic fields of mixed signature with a quadratic 
subfield.) 

Our principal result is: 

Theorem. For a > 2, there are no nontrivial exceptional units in G. For a = 1, 
there are only two nontrivial H-orbits of exceptional units, represented by q- I+ 1 
r1r21 and by IT1r3 

Remark. For a 1, and for many other values of a including all a < 4000, we have 
checked that G = O. A number-geometric argument will show that at any rate 
G = R*, essentially because a nontrivial coset of G in R* would contain elements 
whose absolute discriminants are smaller than 4a6. This argument depends on K 
not having a quadratic subfield. We omit the details since we will not use this 
anywhere. 

Outline of this paper. After a short preparatory section exploiting the action 
of H, our first substantial task will be to determine small intervals containing the 
logarithms of the generating units (more precisely, of the absolute values of their 
real and complex embeddings). This is easier when a is large, and we will often treat 
the smallest values 1 < a < 5 separately. In section 4, we prove two inequalities 
involving the exponents bl, b2 Of 0 = 1q 

I and rq2 occurring in a putative nontrivial 
exceptional unit from G. The "gap inequality" says that the exponents must be of 
very disparate sizes and thus, since they are integers and (as we shall see) neither 
of them is zero, one of them must be very large. This implies that our candidate 
must have an embedding extremely close to 1, the "diophantine approximation 
inequality". Using the latter, we can then replace the crude first version of the gap 
inequality with a sharp one. In section 5, we confront our inequalities with a recent 
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lower bound on linear forms in two logarithms from [4], obtaining explicit upper 
bounds on a and on the exponents bj. Section 6 is devoted to describing the (small) 
amount of machine compu?tation needed to exclude any nontrivial solutions in the 
remaining range. The whole approach is based on ideas introduced by Thomas [14] 
and refined by Mignotte [7]. 

Computer-aided formula manipulations and computations were performed by 
the second author using LiDIA on a Silicon Graphics R5000 Workstation and, 
independently, by the first author using PARI/GP 1.39.13 on an IntelPl00 system 
under LINUX. 

2. PREPARATORY STEPS 

We keep the notations introduced above, and fix embeddings of K into C rep- 
resenting the real and complex places as follows: The first sends 0 to the real root 
of fa between 0 and 1, the second to the real root between -a - 1 and -a, and 
the third to the complex root of positive imaginary part. For elements Ol c K and 
k C {1, 2, 3}, let c(k) denote the image of Ol under the k-th embedding. 

Suppose that G contains a nontrivial exceptional unit w. Since we are free to 
replace w by one of its images under 7-, we may assume that ( E ]1, 2[. Since 

(1) and q11) are positive, we have the ansatz 

wobl ?b2 ~-b1 ?? b2 I% 
=al2= 

1 bb2 

with unknown integer exponents b1, b2 distinct from (0, 0) and (0, 1). 
The importance of this step lies in the fact that it allows us to work with the 

linear form 

(1) A1 = log(l) = b2 logr10q) - bi logqr1() 

in two logarithms of real algebraic numbers, instead of with a linear form in three 
logarithms of complex algebraic numbers, the third being a logarithm wi of -1, as 
would have been the case if we had chosen an w close to 1 at the complex place. For 
linear forms in two logarithms like A1, the lower bounds offered by transcendence 
theory are considerably sharper than for three or more logarithms. As we shall see, 
moving w into the vicinity of 1 at the first real place is sufficient to keep it away 
from 1 at the other two places. Note that this does not generalize to fields of larger 
unit rank, but it is always possible, using 7-, to move an exceptional unit away 
from 1 (more precisely, to move it out of the subset Iz - 11 < 1, Jz > 1/2 of C) at 
two prescribed places. 

Note for future reference the a priori bounds 

(2) 0 < A1 < log2. 

Lemma 1. There are no nontrivial solutions with b1 = 0. 

Proof. We need rough estimates for each of the embeddings of r12; they give a taste 
of what will follow in the next section. 

When a 1, we find 1.269 <r,1q) < 1.270 and r(2) > 2.665, whereas rq (3)I < 0.55. 
Thus (2 b2- 1)(1) > 0.610 for b2 > 2, as well as I(rq2 _ 1)(3)j > 0.6975 and so 
NK/Q(rb2 -1) > 1.81 if b2 > 2. Hence the lemma follows in the case a = 1. 

Now suppose a > 1. The minimal polynomial of r12 is 

ga(X) = X4 _ (a2+2) X3 + (a2-1) x2 + 2x + 1 
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Its value at x = a2 + 1 is 
-2a4 - 2a2 + 1 

which is negativ6 for all a > 1, hence r (2) > a2 + 1. Furthermore, ga(l + a-2/2) is 
positive for a > 2, showing that % - 1 > 1/2a2. Since rq2 is a unit, 

,3)12 = (,q(1Xq(2)> < 1/a < 1/4 
when a > 2, and we conclude in this case that for all integers b2 > 2, 

NK/Q(2 '2 1 ) 1)(1) * ( -22 -1)(2) . 1(,b2 -1)(3) 2 

> ((1/a2 + 1) 2 - 1) * ((a2 + 1) 2 - 1) * (3/4)2 

> (9/16) a 212-2 >1. 

Hence r122 - 1 does not have norm one and so r12 can never be an exceptional 
unit. LI 

3. BRACKETS FOR THE LOGARITHMS OF THE GENERATOR UNITS 

Using a formal Newton-Raphson iteration, it is easy to obtain series expansions 
in powers of a-' for the real roots of fa and of 9a, and then, by splitting them into 
a dominant factor and a series starting with 1, to deduce series expansions of their 
logarithms. The following lemma shows that initial pieces of the series belonging to 
the first real place are well suited for bounding the corresponding logarithms from 
both sides. 

Lemma 2. Consider the two series expansions 

S1 = 2a-2-7a4 + 1136 - 485 8 8612-1 _ 78095 a12 + 718577 _14 
3 2 5 6 7 

-2 _ -4 79 6 _ 705 -8 6396 -10 _ 19597 -12 545917 -14 S2 =a _a + a-a _ a + ~a a + a 
2 3 4 5 2 7 

For 0 < k < 7 and j C {1, 2}, let Sj denote the result of truncating Sj after the 
term proportional to a-2k; in particular, S9 = 0. Then, for all a > 3, 

sgn (log rA1) - (log a + Sk)) = sgn (log r1( -5 1 ) _ (-1)k 

Proof. It is easily checked that 0 < S k < 1 for all a, j, k under consideration. 
Therefore the value of exp(-S k ) is sandwiched between every pair of successive 

partial sums Ej' > 1E J (-Sj)Y/e! of the exponential series. To prove the lemma, 
compute E k,k+l as a Laurent polynomial (rational linear combination of finitely 

j 
many powers of a), substitute (aE k,k+l)-l into fa and E k,k+l into ga, and examine 
the signs of the resulting expressions, which turn out to be the right ones for 
all a > 3. ? 

(A computer algebra package is indispensable here, and instead of substituting 
rational functions of a into the polynomials, one should substitute their numerators 
and denominators into the associated homogeneous binary forms this can speed up 
computation times from many hours to a few seconds. Even so, this step probably 
requires more machine time than all the diophantine computations of section 6.) 
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Similar but simpler reasoning, still assuming a > 3, establishes the brackets 

(3) - loga - a-4 < log lq(2) 1 < -log a, 

(4) 2 log a < log 2) < 2 log a+ 2a-2. 

Combining this with S2 and S' on the one hand, and with S2? and S0 on the 
other, we deduce from INK/Q(rj) I 1 that 

(5) - 2a-2 < log rq(3)1 
2 < -2a-2 + 8a-4, 

(6) -2log a-3a-2 < log 1r23)12 <-2loga. 

We supplement the preceding results with numerical intervals enclosing the six 
logarithms for small values of a. Although 3 < a < 5 are handled by the above, it 
will be profitable to have sharper estimates for this range. The shorthand notation 
for intervals should be self-explaining. For later use we also record brackets for 

d=log 71(1)/log 7121) 

(7) 

a 1 2 3 4 5 

logaq1) +A0.6562560 +0.9920649 +1.2651388 +1.4905673 +1.680163 

logr71(1) +0.23834 20 +0.1288331 +0.076624 8 +0.04949015 +0.03413463 

13 +2.7534228 +7.700395 +16.51083 +30.11848 +49.22169 

log lq (2)1 -0.2551450 -0.7367908 -1.1093367 -1.3899259 -1.6109683 

log q2) +0.9804946 +1.6798662 +2.3219098 +2.8400508 +3.2610399 

log 17(3)1 -0.2005554 -0.1276371 -0.07790099 -0.05032070 -0.03459760 

log 1(3)l -0.6094182 3 0.9043496 -1.1992672 -1.4447704 -1.64757 I______3___7____3_____ 3 

Lemma 3. The units ql and rq2 are multiplicatively independent. 

Proof. The unit subgroup regulator of G can be expressed in several ways as 

the absolute value of a determinant of four logarithms from among logl (1,2) 

and log r43)12. It suffices to show that any one of these determinants is nonzero, 
which is easy using (3)-(6) for a > 3 and the entries of the preceding table for 
a E {1,2}. L 

In what follows, notations of the form ci(a) with i = 1,2,.... will always denote 
positive real-valued functions of a. 

Recall that the absolute logarithmic height h(ae) of a nonzero algebraic integer ae 
is the sum over max{0, log I a(k) I} divided by the degree d of Q(ae) over Q, where 
a(k) ranges over all d embeddings of ae into C. Evaluating this for ae = l and 

r=2 in turn gives, using (3)-(6) and again log a + S' and S' as upper bounds 
for the logqr41), 

Lemma 4. For a > 6, let c1 (a) = log a + 2a-2. The absolute logarithmic heights 
of rq1 and ']2 satisfy 

4h(nij) < cl (a), 

4h(7q2) < 2c1 (a). O 
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The second bound has been chosen slightly weaker than optimal in order to 
simplify our formulas in section 5. This makes little difference for a > 6. For 
smaller a, we compute better values from (7): 

a 1 2 3 4 5 

4h(r1i) < 0.6563 0.9921 1.2652 1.4906 1.6802 

4h(r2) < 1.2189 1.8087 2.3986 2.8896 3.2952 

4. THE GAP AND DIOPHANTINE APPROXIMATION INEQUALITIES 

The fact that rq2 is an exceptional unit of fairly large height, and thus fairly 
close to 1 at the first real place, whereas -qT 2 is the complementary unit 1 -q2 

and therefore fairly close to zero at that place, is responsible for the very disparate 
sizes of the logarithms of r1() and q11). These in turn force the exponents involved 
in any nontrivial solutions to be rather large. More precisely, the trivial bounds 
on A1 from (2) suffice to show that the rational number b2/bl, which "tries to" 
approximate 13 = log rq(1)/log q1), must also be very large, indeed of size exponential 
in the height of the trivial solutions. Since b1 is a nonzero integer by Lemma 1, Ib2l 
must be very large indeed. We call this a "gap inequality", alluding to far more 
general "gap principles" of which this is a special and explicit instance. 

Lemma 5 (Gap Inequality, preliminary form). If b1, b2 come neither from a triv- 
ial solution nor from the known nontrivial ones with a = 1, 

lb2l > b2 > c2(a) 

where for a > 6, 
c2(a) = a2 log(a/2) > 39.550 

and for smaller a we use the values 

a 1 2 3 4 5 

c2(a) 1.2993 2.3201 7.4648 16.112 28.915 

derived from (7). Furthermore, lb2l > 3 even for a = 1 apart from the known 
nontrivial solution. 

Proof. First notice that if a = 1 and Ib1i < 1, then from (2) we have Ib21 < 5, and 
if lb2l < 2, then again from (2) we have lb1, < 1. It is easy to determine that the 
only exceptional units satisfying these inequalities are the trivial and the known 
non-trivial ones. Hence we shall now assume that either a > 2 or a = 1 and Ib1i > 1 
and Ib21 > 2. 

Supposing first that b1 > 0, we have 

b2 Al + > 
bi bi logq(1) 

since A1 > 0 and logq(1) > 0. For a < 6 we notice that 1 is larger than the values 
in the table above. For a > 6 we use Lemma 2 with S? and S' to deduce 

_log,q1) o a 
> c2(a) 

logas r1r a2 

as required. 
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Now suppose that b1 < 0. Then 

b2 Al < log2 lo< g2_ 
bi b I ogq(1) b oq(1) lo'(1) og2 blor2 lg2 

since A1 < log 2. Hence 
b2 > log 2 
bi log (1) 

For all a > 6 we then find, again using Lemma 2, that 

b2 > (logq 7( )-log 2)/log 7} 1)> 
2 

C2(a). 

When 2 < a < 5 we find that (logq(1) - log2)/logq(1) is always greater than 
or equal to the value in the table above. Hence we are only left with the case 
a -1, but our earlier assumptions Ib1i > 1 and Ib2I > 2 for this case give b2 > 

/3-log 2/(2 log(1) ) > 1.2993. L 

One consequence of this inequality is that b1 and b2 must have the same sign. 
This gives us sufficient control at the other two archimedean places to show that 
one of them will contribute a very large factor to the absolute norm of w - 1 and 
the other will contribute a factor not much less than unity. 

Lemma 6 (Diophantine Approximation Inequality). Any further exceptional unit 
would have to satisfy 

log A1 <-C3(a) |b2I 

where c3(a) = 1.99921oga for a > 6, implying log Al < -143, and the values for 
small a are found in the following table: 

a 1 2 3 4 5 

C3(a) 0.6954 1.6232 2.3218 2.8399 3.2609 

A1 < 0.1242 0.0077 10-8 1o-20 10-41 

Proof. In the following estimates we will use the elementary facts that for fixed 
positive c and positive x, the expression x-1 log(1 - exp(-cx)) is a monotonically 
increasing function of x and satisfies 

0 log(l - exp(-cx)) -1 
x x (exp(cx) - 1) 

The proof is split into two cases depending on whether b1, b2 > 0 or b1, b2 < 0 

When b1,b2 > 0, we have 

A2 =log 1 i(2)l = b2 log (2) - b log lq(2)1 > b2 log (2) 

and 

log IW(2) -_ > log(expA2 - 1) = A2 + log(1 - exp(-A2)) 

> b2 log -(2) -1 ? b2 1log 2 expA2 - 1 

? b2 (log?A 2) b2 ((2)2 ) 
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For the third conjugate we find, using Lemma 5 to bound bl/b2, 

A3 = log 1U(3) 1 = b2 log 1 3)1 - b1 log lq(3)1 

=-b2 (log og43) 1 - l og Iq(3) ) 

< -b2 (log I3)I -b2a 
( 2 | C2 (a)) 

say, and so 

log l(3) 112 > 2log(1 -expA3) > b2 b 
2 

(e(-A) 1) 

> b2 
-2 

H b2 (exp(b2F(a)) - 1) 

Hence 

log A1 < log(expAl - 1) = log(w(1) - 1) -log (2) 11 - log I -(3) 112 

< -b2 (log ?A2 b2 (((2))b2-1) b2 (exp(b2F(a)) - 1)) 

The proof for this case is concluded by using the lower bound b2 > C2(a) from 
Lemma 5 and using (3)-(6) to control the log 1% k)l's and thus F(a). 

When bl,b2 < 0, we have 

A2 = log I( < -Ib2I 109% 

and 

log l(2) _ 1 = log(1 - exp(A2)) > -1 
exp(-A2) - 1 

> (2)lb21 

The lower bound on log (3) -11 again involves the expression F(a). We have 

( ~~~~~log Iq 3)1 
A3 >- Ib2I (loglD Iqc(a 2 C2(a) 

and therefore 

log w(3) - 112 > 2 log(exp A3 -1) = 2A3 + 2 log(1 -exp(-A3)) 

> 2 (A3 - exI ) 
(3exp A3-1) 

The second expression in the parentheses is nothing but (exp(-A') - 1)-i where A' 
arises from A3 by changing the signs of b1 and of b2, and we have already obtained 
a lower bound for the denominator while considering the previous case. Thus 

C2(a) - 621 (exp (Ib2 IF(a)) - 1 
log 

IW(3t- 
1|2 > 

2|b2l1 ( log Al < - 
_g (2)_bI_l[gI33 1I 

i bef)Jre. 
) 

The assertion now follows from log A1 < -log wS(2)-11-log 1U(3)112 as before. DG 
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When we proved the first version of the gap inequality, we had used A1 < log 2 
to bound Ib2/b1 - s1, obtaining essentially (log 2)/a2. We can now replace log 2 
with the upper bound on A1 which results from substituting the old lower bounds 
for Ib2l into the approximation inequality. 

Lemma 7 (Gap Inequality, sharp form). If b1, b2 come neither from a trivial so- 
lution nor from the obvious nontrivial ones for a 1, 

jb21 >b2 > c4(a) 

where for a > 6, 
c4(a) = (a2 +4)loga+ 2 > 73.67 

and for smaller a we use the values 

a 1 2 3 4 5 

c4(a) 2.5797 7.6803 16.510 30.118 49.221 

Proof. The generic case (a > 6) is, using S2 and S23 from Lemma 2, 

b2 log(1) -Al/lb2 

bi logq12) 

> 2 log a + 2a-2 - 7a-4 - 10-60 
1 - (9/2) a-2 + (79/3) a-4 

> (a2 + 4)loga+2, 

and we leave the calculations for the small parameter values to the reader. 0 

This procedure of using the bounds on A1 and the gap inequality to sharpen 
each other could be iterated yet again, but the profit would be marginal. 

5. BOUNDING A LINEAR FORM IN TWO LOGARITHMS 

We shall now apply a lower bound tailored to linear forms in the logarithms of 
two multiplicatively independent, positive real algebraic numbers a1 and a2, due to 
Laurent, Mignotte and Nesterenko [4], where one can also find much more general 
results. We paraphrase their Corollaire 2 almost verbatim, except for the following 
three modifications: The numerical coefficients have been replaced with those given 
in the last entry of Tableau 2 of [4, section 8], the equality relating the quantity 
b' to b1 and b2 has been weakened to an inequality for ease of use, and we write 
lbjl instead of assuming that the bi are positive. (They are still supposed to be 
nonzero.) The form A1 is as we had defined it in (1) above, and h(rqj) denotes the 
absolute logarithmic height as in our Lemma 4. Let 

D = [Q(a1, a2) : ], 

and let A1, A2 E R denote two positive real numbers such that 

D log Aj > max {Dh(aj), I log aj 1, 1} 

and b' a positive number satisfying 

b' > lb1i + b2 
- DlogA2 D log A 
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Theorem (Laurent, Mignotte and Nesterenko). Under the above conditions, we 
have 

log IAij I -22.13 D4 (max {logb'+0.71, D })log Al log A2 

We will take aoj = ,thus D = 4, and the 1 inside the maximum is of no 2 
significance. The middle term of the maximum is dominated by the first when 
logb' > 6.79; the upper bound on logb' which we shall derive using the first term 
will be larger than that, so we may also drop the middle term. 

Using Lemma 4, we see that D log A1 can be taken to be log a + 2a-2 for a > 6 
(all of the height comes from the logarithm under consideration), and for D log A2 
we may take twice this amount. Then we set 

b'= C5(a) jb2l 

where c5(a) = 1.0068/loga; that this satisfies the required inequality follows at 
once from Lemma 7. For 1 < a < 5, we use the tables after Lemma 4 and in 
Lemma 7 to justify the following choices for c5(a), taking the opportunity to list 
also the numerical coefficients c6(a) = 22.13D2 D log A1 . D log A2: 

a 1 2 3 4 5 

D log A1 1 1 1.2652 1.4906 1.6802 

(8) D log A2 1.2189 1.8087 2.3986 2.8896 3.2952 

C5(a) 1.3181 1.0720 0.8157 0.6824 0.6014 

c6(a) 431.59 640.43 1074.6 1525.2 1960.4 

The estimate now reads 

log 1 >1 { -708.16 (log a + 2a 2)2 (log b' + 0.71)2, a > 6, 
(9) log A1 ? -C66(a) (log b' + 0.71)2, always. 

We shall apply this twice, first to obtain an upper bound on a and then to 
bound Ib2l for any fixed value of a. 

Proposition 1. Further solutions can only exist when a < 215. 

Proof. Assuming a > 6, then combining (9) with the approximation inequality from 
Lemma 6, we obtain 

-C6(a) (log b' + 0.71)2 < log Al< -C3(a) Ib21. 

We now substitute b' = c5(a) lb2l into this last equation, obtaining 

c6(a) (log(c5(a) lb2l)+ 0.71)2- c3(a) 1b21 > 0. 

For fixed a, the left-hand side is a monotonically decreasing function of Ib2I provided 
that a > 83 and that Ib21 satisfies the gap inequality Ib21 > c4(a) lb11 > c4(a) or its 
weaker consequence lb2j > a2 log a. Note that these conditions ensure that b' > 6.79 
by a wide margin. It is therefore sufficient to show that the left-hand side with lb2l 
replaced by a2 loga becomes negative when a is large enough. The expression in 
question, with log 1.0068 + 0.71 replaced by the larger quantity 0.72, and then 
divided by (log a)4, reads 

( 22 )( 0.72 \ 2 a 2 
708.16 1+2 + -1.9992(og) \~a2 log a} loga)(oa2 
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which is a monotonically decreasing function of a for a > 3, and becomes negative 
at a = 216. (Even the full strength of the gap inequality does not yield a smaller 
result here, but it will help in the next section.) 

The second application is even simpler. 

Proposition 2. Nontrivial solutions, other than the known ones with a = 1, can 
occur only when b2j ?< c7(a), where c7(a) - 47348.1 log a for a > 11 and its values 
for smaller a are as follows: 

|c7(a) j 96396 } 53750 1 61579 71014 j 79265 

a 6 7 8 9 10 

C7 (a) 89837 95285 100398 105125 109503 

Proof. Recall that we need to assume b' > exp 6.79 > 888.9 before we can apply (9). 
Eliminate b2 in favour of b' from the combination of (9) with the approximation 
inequality and divide by (loga)2 to obtain 

2 2 1.9992 
708.16 (1 + - (log b' + 0.71)2- b' > 0. 

k a2 log a 1.0068 

The product of the first two factors on the left-hand side is less than 

a 6 7 ] 8 9 10 >11 

752.76 738.18 }_729.61 724.17 720.52 717.96 

The left-hand side is a monotonically decreasing function of b' when a is fixed and 
log b' > 6.79 (in fact already for rather smaller b'), and it becomes negative when 
b' exceeds 

a 6 7 8 9 10 > 11 

(10) 50480 49300 48610 48170 47880 47670 

Hence (for instance) if a > 11 then jb2j < 47670/c5(a) < 47348.1 log a. 
This leaves us with the small values of a, for which the necessary condition reads: 

Either b' < 889 or 

c6(a) (logb' + 0.71)2 - C3(a) bl > 0. 
C5(a) 

Checking monotonicity of the left-hand side each time (valid for b' > 17200 in the 
worst case a = 1, earlier for 2 < a < 5) and looking for the change of sign, we find 
the following upper limits on b: 

(11) a 1 2 3 4 5 
( 127060 57620 50230 48460 47670 

(The apparent non-monotonicity of the results between a = 5 and a = 6 is spurious; 
it is mainly caused by the fact that our generic D log A2 is not very sharp for a = 6.) 
Rewriting (11) and (10) in terms of jb2j, the result follows. L 
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6. CLOSING THE GAP 

Even more interesting than the upper bounds on Ib2 I are the resulting upper 
bounds on Ib, h1 obtained by combining Proposition 2 with the gap inequality of 
Lemma 7. 

bi < b2< 47348.10ga if a > 11 
C4 (a) C4(a) i 

Two immediate consequences are that for 154 < a < 215, only Ib= 1 is possible, 
and for a > 66 the exponent b1 is restricted to IbiI < 10. 

Since Lemma 6 imposes A1 < exp(-143) on any nontrivial solutions with a > 6, 
which implies 1p - b2/b1l < exp(-132) < 10-57 for 6 < a < 215, we only need 
to check that / is not extremely close to a rational number of denominator not 
exceeding 10 for 66 < a < 125, to half an integer for 126 < a < 153, and to an 
integer for 154 < a < 215 in order to exclude nontrivial solutions in this entire range. 
Instead of inspecting an approximate value of /, one should of course work with 
upper and lower bounds. Such bounds are readily obtained from Lemma 2 using 
S3, S4, S3 and S4 in appropriate combinations. Ideally these bounds should be 
computed with directed rounding in every arithmetic operation, but if the individual 
results are just rounded correctly to the nearest representable machine number, one 
can estimate the maximal accumulated error and then add a suitable quantity to 
the upper bound and subtract it from the lower bound. No candidates for solutions 
are found here. 

(Ten-digit pocket-calculator accuracy is almost sufficient to cover this range; 
with more significant digits available, like the default PARI/GP precision of about 
28 decimal places, one can exploit the shortcut of testing whether 2520/3 is close to 
an integer for 66 < a < 125.) 

For a < 65, testing individual denominator candidates becomes unattractive. 
Instead, we invoke the ordinary continued fraction expansion of ,3. Note first that 
Lemmas 2, 6 and 7 together imply 

1 2a2 1bil 
j3-b2/b1 l < 2bi 12 (1- a-2) exp(c3(a) a2 log a Ib11) 

when a > 3; the second factor is less than 41bl,1/1091b1 and thus far smaller than 1. 
Therefore b2/b1 is a convergent of the continued fraction expansion of /3. If b, and b2 
had a common factor bo > 1, then our putative nontrivial exceptional unit, w, would 
be of the form wbo with a unit wo E G, and wo -1, which divides ( -1, would 
also be a unit in other words, wo itself would have to be a nontrivial solution. 
Therefore it is no loss of generality to assume that b1 and b2 are coprime. But then 
Jb2l and lb1i itself are the numerator pn and the denominator qn of a continued 
fraction convergent of /. 

This argument remains valid for a = 2 and also for a =1 when Ib1i > 1, except 
for the elementary verification that proper powers of the known nontrivial solutions 
for a =1 do not produce any further solutions, when the factor S2 coming from 
the logq21) in the denominator is replaced with a tight numerical estimate for that 
logarithm, and a2 loga under the exponential with the explicit values c4(1) and 
C4(2). 
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Moreover, when 1p - b2/b = 
1B-p,/q, 

I is smaller than 1/(2q2) we have an 
explicit lower bound for the next partial denominator an+1: 

an+1 + 2 > (qn /3- - 

(This is an easy consequence of Theorems 163 and 171 of [3].) It implies an+1 > 108 

for any nontrivial solution with a > 3, and an+1 > 104 for any with a = 2. For 

a = 1, it implies an+1 > 37 when lb1i > 4 and an+1 > 180 for lb1i > 4; we won't 

need to consider lbil E {2,3} since the sequence of denominators of convergents 

begins 1, 1, 4, 18,... in this case. 

It remains to verify for each 1 < a < 65 that no partial denominators of the 

indicated size occur in the expansion of /3 before the denominators of the conver- 

gents exceed the upper bound on lbil. The expansions should be computed using 

Lehmer's technique [1, Algorithm 1.3.13] of simultaneously expanding an upper and 

a lower bound for the true value of /3. The partial denominators in common to both 

expansions are then known to be correct, and the first discordant pair of partial 

denominators still yields rigorous bounds for the correct value. As before, suitable 

bounds for / can be obtained from Lemma 2 when a is not too small. The same 

truncation orders a-6 and a-8 as used earlier are sufficient for a > 50. For a < 49 

the truncated series S3 and S2 should be replaced with S5 and S5; for a < 39, we 

replace S4 and S4 with S16 and S6, and for 11 < a < 16, we invoke the full power 

of S7 and S7. Treating the entire range 11 < a < 215 took less than 1.8 seconds 

using PARI/GP. For a < 10, we calculate q1) to higher precision using a numeric 

Newton iteration, and compute /3 from the result with adequate safety margins on 

either side. 

The proof of the Theorem is now completed by combining the two propositions 

with the nonexistence of good diophantine approximations as established in this 

section. 
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